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a b s t r a c t

This paper presents the modeling technique, working mechanism and design guidelines for acoustic
multi-stopband metamaterial plates for broadband elastic wave absorption and vibration suppression.
The metamaterial plate is designed by integrating two-degree of freedom (DOF) mass–spring subsystems
with an isotropic plate to act as vibration absorbers. For an infinite metamaterial plate without damping,
a working unit is modeled using the extended Hamilton's principle, and two stopbands are observed
through dispersion analysis on the averaged three-DOF model. For a finite metamaterial plate with
boundary conditions and damping, shear-deformable conforming plate elements are used to model the
whole plate, and stopbands are investigated by frequency response analysis and transient analysis.
Influences of absorbers' resonant frequencies and damping ratios, plate's boundary conditions and
dimensions, and effective plate-absorber vibration modes are thoroughly investigated. Results show that
the metamaterial plate is essentially based on the concept of conventional vibration absorbers. The local
resonance of the two-DOF subsystems generates two stopbands, and the inertial forces generated by the
resonant vibrations of absorbers straighten the plate and attenuate/stop wave propagation. Each stop-
band's bandwidth can be increased by increasing the absorber mass and/or reducing the average mass of
isotropic plate in each working unit. Moreover, while a low damping ratio for the primary absorber can
guarantee absorbers' quick response to transient excitations, a high damping ratio for the secondary
absorber can combine the two stopbands into a wide one. In the end, a sensitivity analysis on absorber
resonant frequencies is conducted and relatively large sensitivity is found at the two stopband regions.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of metamaterials was first discussed in 1968 [1]
but most of the early studies focused on electromagnetic meta-
materials (EMs), which are materials with negative permittivity
and permeability. Famous properties of EMs include negative
refractive indices [2], ability of invisibility [3,4], and inverse Dop-
pler effect [5]. Based on the similarity between electromagnetic
waves and acoustic waves, a new type of metamaterials called
acoustic metamaterials was proposed and investigated in recent
years [6–10]. Popular research topics about acoustic metamaterials
include ultrasound focusing [11], acoustic cloaking [12], elastic
wave absorption [13] and structural vibration mitigation [14].
Because earthquake often generates destructive body and surface
waves [15], seismic waveguides are an important application of
acoustic metamaterials. For example, Kim and Das proposed a
novel seismic attenuator made of metamaterials based on the
characteristics of different seismic waves [16], and Brule et al. [17]
experimentally investigated seismic metamaterials interaction
with seismic waves by molding the surface waves.

Phononic crystals (PCs), sometimes also classified as a special
kind of acoustic metamaterials by some researchers [18,19], have
been under investigation since the 1990s [20–22]. Similar to
acoustic metamaterials, PCs usually exhibit anomaly properties,
such as stopbands (or bandgaps) [23], negative refractive index
[24] and Fano profiles [25], but the difference between PCs and
acoustic metamaterials is also significant. Detailed comparison
between acoustic metamaterials and PCs have been done by lots of
researchers [6,18,19]. PCs, analogous to the idea of photonic crys-
tals, are artificial composite materials consisting of acoustic func-
tional scatters of high impedance and matrix of low impedance.
Because PCs are based on the idea of Bragg scattering, the scatters
must be arranged spatially on the order of the matrix acoustic
wavelength [6]. However, wavelengths of environmental low-
frequency sound waves are usually large and hence absorption
of such waves requires large size PCs, which usually limits the
application [26]. One solution to this problem is to use acoustic
metamaterials.
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Fig. 1. A multi-frequency vibration absorber.
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Instead of relying on Bragg scattering effect, acoustic meta-
materials utilize local resonance of inclusions, and hence the size
of acoustic metamaterials can be far less than the wavelength. For
example, the acoustic metamaterials proposed in 2000, consisting
of rubber-coated lead balls, are two orders smaller than the inci-
dent wavelength [27]. Acoustic metamaterials can be further
classified into intrinsic and inertial ones [6]. In intrinsic acoustic
metamaterials, the phase speed of the inclusions (e.g., soft silicon
rubber [28]) is much lower than that of the matrix [29,30]. Instead
of requiring inclusions with low phase velocity, inertial acoustic
metamaterials employ mass–spring–damper subsystems as local
resonators. The inertial forces of the subsystems under resonance
work against the excitation and attenuate the vibration. Early
studies on inertial acoustic metamaterials focused on dispersion
analysis and band structures of mass–spring lattice systems. For
example, In 2003 phononic stopbands of 1-D and 2-D mass–spring
lattice structures with two types of working units were extensively
investigated [31]. Subsequently, different types of mechanical
lattice structures with stopbands were proposed [32]. The effect of
attaching mass–spring subsystems to a rigid body was investi-
gated in 2007 [33]. In 2008 the negative effective mass and
stopbands of a 1D mass–spring system was experimentally ver-
ified [34]. The experiment was conducted on an air track and CCD
cameras were used to capture the motion of the masses.

Although inertial acoustic metamaterials with lattice structures
have been widely discussed, metamaterials with continuum
structures like bars, beams, plates and shells, which are more
commonly used in engineering designs, have not been fully stu-
died. In 2008 Cheng et al. [35] proposed a 1-D ultrasonic meta-
material beam showing simultaneously negative dynamic density
and modulus. The metamaterial beam was constructed by
attaching Helmholtz resonators to an elastic beam, and analyzed
with an acoustic transmission line method. The results was con-
firmed by finite-element analysis using solid elements for both the
elastic beam and the Helmholtz resonators. The model was latter
improved with parallel-coupled Helmholtz resonators [36]. In
2008 and 2010 Wu [37] and Oudich [38] proposed metamaterial
plates with periodic stubbed surface. Both of them reported
stopbands in metamaterials either using single-material stubs
with height three times the plate thickness, or using rubber stubs
with metal caps. No matter the metamaterials are constructed by
rubber-coated lead balls [27], Helmholtz resonators [35,36], or
plates with stubbed surface [37,38], all the local resonators can be
modeled by simple mass–spring subsystems. However, due to
difficulties in modeling local deformation/motion of discrete
mass–spring subsystems attached to continuum bodies by classi-
cal continuum theories, such models have not been well analyzed
[39]. Zhu et al. [39] proposed a microstructure continuum model
to tackle the problem but the displacement in the continuum body
was approximated by linear series expansions in terms of quan-
tities defined at the cell center, rather than modeled with classical
continuum theory. A review of previous elastic metamaterial
plates have been done by Zhu et al. [40].

Based on the classical continuum theory [41], we have done
extensive work on metamaterial bars, beams and plates by mod-
eling the discrete local resonators as essential mass–spring sub-
systems [7–10]. In 2010 a metamaterial bar made of a hollow
longitudinal bar with mass–spring subsystems attached inside was
introduced [7]. Dispersion analysis and finite-element modeling
showed that a stopband was created by the subsystems, and the
stopband was tunable by changing the resonant frequencies of the
subsystems. Following a similar approach, a metamaterial beam
was designed by attaching translational and rotational subsystems
to an elastic beam [9]. Timoshenko's beam theory and rotary
inertias were included in the model because shear deformation
and rotary inertias are important for thick beams and/or high-
frequency vibrations. Finite-element analysis showed a tunable
stopband and the attached rotational inertias were proved to be
not as efficient as the translational inertias. In 2014 the stopband is
largely expanded by introducing a multi-stopband metamaterial
beams. Two stopband are connected into a wide one by attaching a
secondary vibration absorber to the primary one and applying
large damping to the secondary vibration absorber [8]. Recently
Peng and Pai [10] proposed metamaterial plates with mass–spring
subsystems for wave absorption and vibration suppression.

Metamaterial plates have more engineering applications than
metamaterial bars or beams. For example, metamaterial plates can
be used to protect important building structures (e.g., museums,
dams and school buildings) during earthquakes and reduce noise
in residential halls. To the authors’ knowledge, metamaterial plate
models based on the idea of multi-frequency mass–spring absor-
bers have never been presented in the literatures. This paper is
aimed to design a multi-stopband metamaterial plate for broad-
band vibration absorption by employing the local resonance
between the multi-frequency absorbers and the external excita-
tion. Each absorber consists of a primary and a secondary absorber
and hence the multiple resonant frequencies of the subsystems
can be used to attenuate/stop broadband elastic waves. Guidelines
for appropriate design of primary and secondary absorbers are
derived. Influences of absorbers’ resonant frequencies and damp-
ing ratios, plate's boundary conditions and dimensions, and
acoustic and optical plate-absorber vibration modes are fully
investigated.
2. Multi-frequency vibration absorber

A single stopband exists right above the resonant frequency of
a conventional single-mass vibration absorber [7,42]. Increase of
the absorber damping canwiden the stopband to some degree, but
the effect is minimal. Moreover, large absorber damping slows
down the absorber’s response to an excitation and increases the
transient time. These shortcomings of conventional vibration
absorbers prompt the idea of using multi-frequency vibration
absorbers. Fig. 1 shows a multi-frequency vibration absorber. The
base system m is connected to the ground by the spring k and the
damper c and subjected to a harmonic excitation f with an
amplitude f 0 and a frequency ω. The displacement of the base
system is denoted by u. Different from the conventional vibration
absorber, two massesm1 and m2, instead of a single mass, are
attached to the base system. The displacements of the primary and
secondary masses are denoted by u1 and u2, respectively. This
multiple-frequency vibration absorber is designed such that the
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primary vibration absorber can quickly respond to the base sys-
tem’s vibration while the secondary vibration absorber can sig-
nificantly damp out the vibration energy transferred into the
absorbers by using a high damping value for c2. According to
Newton's second law, the equation of motion for this 3-DOF sys-
tem can be obtained as

M½ � €d
n o

þ C½ � _d
n o

þ K½ � d
� �¼ Ff g ð1Þ
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For frequency response analysis (FRA), the system is subjected
to a harmonic excitation

Ff g ¼ F0f gejωt ð3Þ
and the frequency response function matrix [H] is given by

d0
� �¼ ½H� F0f g; ½H� � �ω2 M½ �þ jω C½ �þ K½ �� ��1 ð4Þ
where d0

� �
is the steady-state vibration amplitude vector of the

three masses, [H] contains frequency response functions (FRFs),
F0f g ¼ f 0;0;0

� �T and j�
ffiffiffiffiffiffiffiffi
�1

p
. The frequency response functions

for m; m1 and m2 are H11j j; H21j j and H31j j, respectively.
Because the model in Fig. 1 is a 3-DOF system, three response
peaks are expected in each FRF, and hence there are two low-
response frequency bands among the three peaks, as shown later
in Fig. 3(a). These two low-response frequency bands can be
regarded as stopbands of the 3-DOF system. Two local resonant
frequencies of the absorber are defined asωn1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
and

ωn2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
. The working principle of the vibration absorber is

to make u¼ 0 by adjusting one of these two local resonant fre-
quencies equal to the excitation frequencyω. If there is no damp-
ing in the system (i.e., c¼ c1 ¼ c2 ¼ 0), the two zero-response fre-
quencies ωi can be derived from Eqs. (2) and (4) to be

ω1;ω2 ¼ωn1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþrsþs7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþrsþsð Þ2�4rs

q
2r

vuut
ð5Þ

where r�m2=m1and s� k2=k1. If r is fixed to be 0.03, 0.05 and
0.08, respectively, Fig. 2(a) depicts how ωi changes with s. Note
that both ω1andω2 increase when r decreases and/or s increases.
Because the design purpose is to eliminate the middle response
peak and combine the two low-response frequency bands into
one, a narrow bandwidth between ω1andω2 is desired. The bro-
ken lines in Fig. 2(a) and (b) show that ω2�ω1 reaches its mini-
mum when r¼ s, and ω2�ω1decreases when rð ¼ sÞ decreases.
This is a very valuable design guideline.

For numerical simulations, r¼s is used by following the pre-
vious reasoning and the parameters of the 3-DOF system are
chosen to be

m¼ 10 kg; m1 ¼ 1 kg; m2 ¼ rm1; k2 ¼ sk1; r¼ s; ςi � ci=ð2miωniÞ

ωn ¼
ffiffiffiffiffiffiffiffiffi
k=m

q
¼ 10 Hz;ωn1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

q
¼ 10 Hz;ωn2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

q
¼ 10

First, the three damping ratios are set to be ς¼ ς1 ¼ ς2 ¼ 0:02
and the mass ratio r is varied. Fig. 3 shows the FRFs of m, m1 and
m2 under different r (¼s) values. The black dash line in Fig. 3
(a) shows that if r¼ 0 (i.e., the system becomes a 2-DOF system),
there are only two response peaks and the single zero-response
frequency is 10 Hz. If r40, there are two zero-response fre-
quencies ω1 and ω2, which are located at left and right sides of
ωn1 ¼ 10 Hz and ω1þω2ð Þ=2�ωn1. Fig. 3(a) shows that, when r
increases, ω2�ω1 increases and the middle response peak
increases. Hence, it becomes more difficult to eliminate the middle
response peak and combine the two low-response bands around
ω1andω2 into one large low-response frequency band when r is
large. Fig. 4 shows how the middle response peak of u is elimi-
nated by choosing appropriate values for rð ¼ sÞ and ς2. With
ς¼ ς1 ¼ 0:02, Fig. 4(a) shows that ς2 ¼ 0:1 successfully eliminates
the middle response peak for cases with r¼ 0:03 and 0:05 but
does not work for cases with r¼0.08 and 0.12. In Fig. 4(c), ς¼ ς1
¼ 0:02 and r¼ 0:05are used and ς2 varies from 0.02 to 0.15. The
middle response peak is eliminated if ς2 is higher than 0.1. Hence,
another design guideline derived from these results is that an
optimal set of values for rð ¼ sÞ and ς2 is needed in order to
eliminate the middle response peak and expand the low-response
frequency band.



Fig. 3. FRFs under ς¼ς1¼ς2¼0.02 and different r(¼s) values: (a) FRFs of m,
(b) FRFs of m1, and (c) FRFs of m2.

Fig. 4. FRFs of the mass m with r¼s and ς¼ς1¼0.02: (a) ς2¼0.1 and different r
values and (b) r¼0.05 and different ς2 values.
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3. Dispersion analysis of multi-stopband metamaterial plate

The previous section analyzed a 3-DOF multi-frequency vibra-
tion absorber composed of three parts: the base structure (m), the
primary vibration absorber (m1) and the secondary vibration
absorber (m2). Based on this 3-DOF multi-frequency vibration
absorber, a working unit of a multi-stopband metamaterial plate is
created by replacing the base structure m with an isotropic rec-
tangular plate as shown in Fig. 5a, where the Cartesian coordinate
system is defined with its origin at the center of the plate and the
plate dimensions are 2a� 2b� h. First we define momentum
resultants M1, M2 and M6 as [41]

M1 ¼
Z h=2

�h=2
σ11zdz¼ �D wxxþνwyy

� �
;

M2 ¼
Z h=2

�h=2
σ22zdz¼ �D νwxxþwyy

� �

M6 ¼
Z h=2

�h=2
σ12zdz¼ �D 1�νð Þwxy;

D� Eh3

12 1�ν2
� � ð6Þ

where σ11 and σ22 are normal stresses along the x and y direc-
tions, σ12 is the in-plane shear stress and w is the vertical
displacement of the plate. The Young’s modulus, density, Poisson’s
ratio and flexural rigidity of the plate are denoted by E, ρ, ν and D,
respectively. The variation of kinetic energy δT of the plate is

δT ¼
Z a

�a

Z b

�b
�ρh €wδw

� �
dx dy ð7Þ

The variation of elastic energy δΠ of the plate can be repre-
sented as

δΠ ¼
Z a

�a

Z b

�b

Z h=2

�h=2
σ11δε11þσ22δε22þσ12δε12
� �

dzdxdy

¼
Z a

�a

Z b

�b

Z h=2

�h=2
�σ11zδwxx�σ22zδwyy�2σ12zδwxy

� �
dzdxdy

¼
Z a

�a

Z b

�b
�M1δwxx�M2δwyy�2M6δwxy

� �
dxdy

¼
Z a

�a

Z b

�b
�M1xxδw�M2yyδw�2M6xyδw

� �
dxdy

þ
Z b

�b
�M1δwxþðM1xþM6yÞδw�M6δwy

� �x ¼ 0�

x ¼ �a

n
þ �M1δwxþðM1xþM6yÞδw�M6δwy
� �x ¼ a

x ¼ 0þ

o
dy

þ
Z a

�a
�M2δwyþðM2yþM6xÞδw�M6δwx

� �y ¼ 0�

y ¼ �b

n
þ �M2δwyþðM2yþM6xÞδw�M6δwx
� �y ¼ b

y ¼ 0þ

o
dx ð8Þ

where ε11; ε22 and ε12 are the normal strain along x, normal
strain along y and in-plane shear strain, respectively. The non-
conservative virtual work done by the external forces to the plate
is

δWnc ¼
Z b

�b
�M1δwxþQ1δw�M6δwy

� �x ¼ a
x ¼ �ady

þ
Z a

�a
�M2δwyþQ2δw�M6δwx

� �y ¼ b
y ¼ �bdxþk1ðu1�w0Þδw0

Q1 �M1xþM6y;Q2 �M2yþM6x
� � ð9Þ

where Q1 and Q2 are the transverse shear force intensities on the
yz and xz planes, w0 is the displacement of the plate’s center



w

h

1k

1m

2k

2m

1c

2c

1u

2u

0w w
, ,E ν ρ

, ,E ρ ν

x

y

z

1M

1M

2M

2M

6M

6M

6M

6M1Q

1Q

2Q
2Q

2m

2a

2b

2b

1m

Fig. 5. A 3-DOF model of a working unit of the metamaterial plate.
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where m1 is attached. Substituting Eqs. (7)–(9) to the extended
Hamilton principle yields

0¼
Z t

0
δT�δΠþδWnc
� �

dt

¼
Z t

0

Z a

�a

Z b

�b

�ρh €wþM1xxþM2yyþ2M6xy

	(

þ ~Q þk1ðu1�w0Þ
h i

δðx; yÞ


δwdxdy

)
dt

~Q � Qx ¼ ε1=2
1 �Qx ¼ �ε1=2

1

	 

ε2þ Qy ¼ ε2=2

2 �Qy ¼ �ε2=2
2

	 

ε1; ε1; ε2 � 0

ð10Þ
where δðx; yÞ is a 2D Dirac delta function, and ~Q accounts for the
discontinuity of the internal transverse shear force at where m1 is
attached. Setting the coefficient of δw in Eq. (10) to zero yields the
governing equation for the plate as

�ρh €wþM1xxþM2yyþ2M6xyþ ~Q þk1ðu1�w0Þ
h i

δðx; yÞ ¼ 0 ð11Þ

Integrating Eq. (11) over the plate and using the definitions of
M1, M2, M6 and ~Q givesR a

�a

R b
�b �ρh €w

� �
dydx�D

R a
�a wyyyþwxxy

� �y ¼ b
y ¼ �bdx

�D
Z b

�b
wxxxþwxyy
� �x ¼ a

x ¼ �adyþk1ðu1�w0Þ ¼ 0 ð12Þ

Note that ~Q is canceled out after the integration. Eq. (12) can be
interpreted as a rigid body moving with an acceleration averaged
over its area and subject to transverse shear forces on its four
edges and a concentrated force from the primary vibration
absorber m1 at its center. In other words, the working unit in Fig. 5
can be treated as a dynamically equivalent 3-DOF system. The
governing equations for the primary and secondary vibration
absorbers m1 and m2 can be obtained by using Newton’s second
law as

m1 €u1�k1w0þ k1þk2ð Þu1�k2u2 ¼ 0 ð13Þ

m2 €u2�k2u1þk2u2 ¼ 0 ð14Þ
If a single-frequency harmonic wave propagates in an infinite

metamaterial plate made of many of the working unit shown in
Fig. 5, the plate’s displacement wðx; y; tÞ, and the primary and
secondary absorbers’ displacements u1ðtÞ and u2ðtÞ can be repre-
sented as

w¼ pej αxþβy�ωtð Þ; u1 ¼ qe� jωt ; u2 ¼ re� jωt ð15Þ
where α and β are the wavenumbers along x and y directions, ω
is the wave frequency, and p; q and r are the vibration ampli-
tudes. Substituting Eq. (15) into Eqs. (12)–(14) and rewriting the
results in matrix form yields

sin aαð Þ sin bβð Þ
αβ

4ρhω2�
4D α2þβ2

	 
2

2
4

3
5�k1

8<
:

9=
;

2
4

k10k1m1ω2�k1�k2k20k2m2ω2�k2

3
5 p

q

r

8><
>:

9>=
>;¼ 0 ð16Þ

Eq. (16) is essentially an eigenvalue problem. The relation
between ω and α and β can be found by setting the determinant
of the matrix in Eq. (16) to zero. Corresponding to each pair of
α and β, there are three real and positive solutions for ω. The
parameters of the working unit for dispersion analysis are chosen
to be consistent with parameters used in the following frequency
response analysis so that stopbands from two analyses can be
compared.

Lengths : 2a¼ 0:125m; 2b¼ 0:125 m;

Plate thickness : h¼ 15 mm
Young's moduls : E¼ 72:4 GPa;
Poisson's ratio : ν¼ 0:33;

Mass density : ρ¼ 2800kg=m3

Attched masses : m1 ¼ 65:6 g; m2 ¼ 0:05m1 ¼ 3:3 g;
ωn1 ¼ωn2 ¼ 800 Hz ð17Þ
Fig. 6(a) shows a perspective view of the dispersion surfaces in

a selected zone having 0oαo20 and 0oβo20. Because three
real and positive values of ω can be obtained for each pair of
α and β, there are three dispersion surfaces in Fig. 6(a). If no
vibration absorbers are attached to the plate, there is only one
dispersion surface and the plate is self-dispersive because the
speed of a harmonic wave propagating in it changes with the wave
frequency. In order to clearly show the two stopbands among the
three dispersion surfaces, the frequency value along the four edges
of each dispersion surface (e.g., Μ�Γ�Π�Χ�Μ of the upper
dispersion surface in Fig. 6(a)) is traced and plotted in Fig. 6(b).
The dotted black curve in Fig. 6(b) is of an isotropic plate without
absorbers (i.e., m1 ¼m2 ¼ 0). The two stopbands among the three
dispersion curves are 712.9–737.6 Hz and 891.7–912.1 Hz if the
resonant frequency of the primary and secondary vibration
absorbers is tuned to be ωn1 ¼ωn2 ¼ 800 Hz.

Fig. 7 shows how the two stopbands change with different
parameters of the working unit. The black dotted line is the
referential case using the parameter values in Eq. (17). The red line
shows the result with the working unit’s side lengths being
reduced (i.e., less weight) to 2a¼ 2b¼ 0:125 m. The lower bounds
of both stopbands remain almost the same but the upper bounds
of both stopbands move upward, and hence the stopbands become
wider. The blue line shows the result with m1 being reduced
tom1 ¼ 0:025 kg. The lower bounds of both stopbands move
upward and the upper bounds move downward, and hence the
stopbands become narrower. The cyan line shows the result with h
being increased to 20 mm. The upper and lower bounds of both



Fig. 6. Dispersion surfaces and stopbands of the metamaterial plate: (a) dispersion
surfaces and (b) stopbands.
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stopbands move upward and hence the bandwidth of each stop-
band has no significant change. These results show that the most
significant way of increasing each stopband’s bandwidth is to
increase the mass ratio m1=ð4abhρÞ.
Fig. 8. A multi-stopband metamaterial wall: (a) 3D view and (b) finite element
discretization. (For interpretation of the references to color in this figure, the reader
is referred to the web version of this article.)
4. Frequency response analysis of multi-stopband metama-

terial plates

In order to include the influences of boundary conditions and
loading on a metamaterial plate, we consider a multi-stopband
metamaterial wall shown in Fig. 8(a), which has horizontal length
La¼5 m and vertical length Lb¼3 m. The two vertical edges at x
¼ 0 and 5 m (red stars in Fig. 8(b)) are hinged, and a harmonic
force with amplitude of 100 kN is applied at the second node
(green star in Fig. 8(b)) from the left end of the centerline. The
isotropic plate is modeled with 40� 24 first-order shear-deform-
able rectangular plate elements with conforming behavior along
element edges. The magenta dots at the element nodes represent
the multi-frequency absorbers. There are no absorbers on the
hinged edges at x¼0 and 5 m and the free edges at y¼0 and 3 m.
The physical properties and thickness of the plate are the same as
the working unit analyzed in the dispersion analysis. The masses
of each absorber are m1 ¼ 65:6g and m2 ¼ 0:05m1, and the total
absorber mass is 9.81% of the whole structure mass. The resonant
frequencies of the primary and secondary absorbers are both set to
be ωn1 ¼ωn2 ¼ 800 Hz.

In order to quantify the vibration suppression performance of
metamaterial plates, the difference between frequency response
functions (FRFs) for metamaterial plates and isotropic plates is
used. For example, the average FRF of the isotropic plate at x¼ 0:5
La is calculated and then the average FRF of the metamaterial plate



Fig. 9. Vibration suppression with different damping ratios for absorbers:
(a) average vibration suppression at x¼2.5 m and (b) average vibration suppression
at x¼4 m. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)

Fig. 10. Steady-state ODSs with ς1¼ς2¼0: (a) ω¼725 Hz, (b) ω¼800 Hz, and
(c) ω¼900 Hz.
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at the same locations is subtracted from the FRF of the isotropic
plate. The resultant FRF represents how much vibration is sup-
pressed after adding the vibration absorbers to the isotropic plates.
Therefore, a vibration suppression function S can be define as

S¼ 20log 10 wð Þ�20log 10 W
� � ð18Þ

where w andW are the average displacement on the same loca-
tion of the plate (e.g., x¼ 0:5La and x¼ 0:8La) before and after
attaching the vibration absorbers.

Fig. 9(a) and (b) shows the vibration suppression function at
x¼ 0:5La and x¼ 0:8La, respectively. The horizontal black dash
lines in Fig. 9(a) and (b) represent that no influence is introduced
after adding the vibration absorbers, and any curves above this
line represent vibration reduction. The damping ratios of the pri-
mary and secondary absorbers are denoted with ς1 and ς2, and
the red solid lines represent the vibration suppression function
with ς1 ¼ ς2 ¼ 0. With zero damping, two stopbands where
vibration suppression abruptly increases, are shown by the gray
bands. These two stopbands, with ranges 714–738 Hz and 893–
913 Hz, are slightly different from those in the dispersion analysis
(712.9–737.6 Hz and 891.7–912.1 Hz in Fig. 6) because boundary
conditions and loading are not considered in dispersion analysis.
The red solid lines shows that although vibration in the stopbands
are well suppressed, vibration under frequencies outside of the
stopbands is not properly reduced, and at some frequencies even
increased (curves under the horizontal back dash line). The cyan
dash-dot lines in Fig. 9 represent the vibration suppression func-
tion with ς1 ¼ ς2 ¼ 0:02. Although two stopbands are widened by
non-zero damping ratios, the two stopbands are not combined
into a continuous broad stopband. The blue dash lines represent
the vibration suppression function with ς1 ¼ 0:02 and ς2 ¼ 0:08.
The low damping in the primary absorber (ς1) allows for quick
response to transient excitation and the high damping in the
secondary absorber (ς2) helps suppress the steady-state vibration.
The blue dash lines show that the two stopbands are combined
into a broad continuous stopband and the vibration within 600–
1000 Hz are well suppressed. Figs. 10–12 show the plate's steady-
state operational deflection shapes (ODSs) under excitation
frequencies at 725 Hz (in the first stopband), 800 Hz (between the
two stopbands) and 900 Hz (in the second stopband). No damping
is used in Fig. 11, ς1 ¼ ς2 ¼ 0:02 is used in Fig. 12, and ς1 ¼ 0:02
and ς2 ¼ 0:08 is used in Fig. 12. When the excitation frequency
falls into the stopbands, waves cannot propagate through for all
three cases. However, significant vibration suppression between
the two stopbands is only observed when large damping is used
for the secondary vibration absorbers, as shown by Figs. 10(b) and
12(b).
5. Transient analysis of multi-stopband metamaterial plates

Because stresses in a structure during the transient period right
after loading are often larger than those in steady states, structural
failure often occurs during the transient period. Although fre-
quency response analysis (FRA) shown in Section 4 can reveal the
performance of the metamaterial wall at steady states, how the
metamaterial wall behaves before the steady state is also crucial



Fig. 11. Steady-state ODSs with ς1¼ς2¼0.02: (a) ω¼725 Hz, (b) ω¼800 Hz, and
(c) ω¼900 Hz. Fig. 12. Steady-state ODSs with ς1¼0.02 and ς2¼0.08: (a) ω¼725 Hz,

(b) ω¼800 Hz, and (c) ω¼900 Hz.
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for design and needs to be examined by performing direct
numerical integration of the finite-element equations. Figs. 13–15
show the transient responses, operational deflection shapes
(ODSs) and distributions of the transverse shear force intensity
Q1of the metamaterial wall with ς1 ¼ 0:02andς2 ¼ 0:08 under
different excitation frequencies 725 Hz, 800 Hz and 900 Hz,
respectively. The ODSs are obtained at the end of the numerical
integration.

The red, green and blue lines in Fig. 13(a) represent the tran-
sient vibrations of nodes at x¼1 m, 2.5 m and 4 m on the center-
line (y¼1.5 m). It takes about 0.269 s (195 excitation periods) for
the structure to reach its steady state. Fig. 13(b) shows that both
the plate and absorbers have almost zero vibration amplitudes
beyond x42.5 m. The blue line, black lines and red lines in Fig. 13
(b) represent the ODSs of the plate, primary absorbers, and sec-
ondary absorbers, respectively. When the excitation frequency
falls within the first stopband (e.g.,ω¼ 725 Hz), the primary and
secondary absorbers move in phase and there is a 90 3 phase angle
between the absorbers and the plate. In other words, the plate and
absorbers move in a mixed mode consisting of optical and acoustic
modes. Fig. 13(c) shows the transverse shear force intensity along
the centerline. The first peak is due to the concentrated excitation
force. The corresponding relations between the other four extreme
values in Fig. 13(c) and the extreme values of the plate’s ODS in
Fig. 13(b) are indicated by the dash lines. It is obvious that large
values of Q1 happen around where the plate has large curvatures
and straighten the plate to stop/attenuate wave propagation. This
is the actual working mechanism of this metamaterial plate based
on vibration absorbers.

Results in Fig. 14 are similar to those in Fig. 13 but the excitation
frequency is set at 800 Hz. Fig. 14(a) shows that it takes about
0.196 s (157 excitation periods) for the structure to reach its steady
state. Fig. 14(b) shows that the plate (blue line) and secondary
vibration absorbers (red dots) work in an optical mode (i.e., out of
phase by 180 3 ) but the primary vibration absorbers work in a



Fig. 13. Transient analysis under ω¼725 Hz: (a) vibration of nodes at x¼1 m, 2.5 m
and 4 m on the centerline, (b) ODSs from direct numerical integration, and
(c) distribution of shear intensity Q1 along centerline. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this
article.)

Fig. 14. Transient analysis under ω¼800 Hz: (a) vibration of nodes at x¼1 m, 2.5 m
and 4 m on the centerline, (b) ODSs from direct numerical integration, and
(c) distribution of shear intensity Q1 along centerline. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this
article.)
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mixed mode. Fig. 14(c) shows that the extreme shear force values
created by the primary absorbers’ mixed-mode vibrations
straighten the isotropic plate and stop the wave from propagating
forward. Results in Fig. 15 are under an excitation frequency ω¼
900 Hz (in the second stopband). Fig. 15(a) shows that it takes
0.196 s (176 excitation period) to reach a steady state. Fig. 15
(b) shows that the primary and secondary vibration absorbers are
180 3out of phase. The plate and primary absorbers (black dots)
work in an optical mode and the plate and secondary absorbers
work in a mixed mode. Although ω¼ 800 Hz is not within one of
the two stopbands, Fig. 14(b) shows that the excited wave cannot
propagate forward because the excitation energy is transferred
into the absorbers and damped out by the high damping of the
secondary absorbers.
6. Sensitivity analysis

In the above analyses, the resonant frequencies of the primary
and secondary vibration absorbers are ideally set to 800 Hz but
this ideal scenario is not easy to realize in real design process.
Taking the mass–spring type vibration absorbers as an example,
even if the attached mass is accurately weighed and the spring
constants are carefully calibrated, error will probably be intro-
duced in the assembly processes, which include welding, gluing or
bolting. Because error is not avoidable in application, how
sensitively the metamaterial plates respond to the error is of great
interest to us.

In the sensitivity analysis, the resonant frequencies of the pri-
mary and secondary vibration absorbers are assumed to obey nor-
mal distributions with mean 800 Hz and different standard devia-
tions. Fig. 16(a) and (b) show the average vibration suppression
function of metamaterial plates at x¼2.5 m and x¼4 m. Based on
the former frequency response analysis, optimal damping ratios ς1
¼ 0:02 and ς2 ¼ 0:08 are used. The vibration suppression function
for metamaterial plates with absorber resonant frequency
distribution N 800;0ð Þ Hz, N 800;802

	 

Hz and N 800;1602

	 

Hz

are plotted with red solid lines, cyan dash lines and blue dash-dot
lines, respectively. Large sensitivity is observed at two stopband
regions (near 725 Hz and 900 Hz) and sensitivity near 800 Hz is
almost zero. It’s also interesting to note that non-uniform absorber
natural frequencies improve the vibration suppression function
at 600–670 Hz and 925–1000 Hz. In conclusion, the performance
of metamaterial plates seems not quite sensitive to the error
introduced into the absorber natural frequencies. However, the
sensitivity at two stopband regions is relatively large, and extra
attention should be paid if excitation frequencies are in the two
regions.

7. Conclusions

This paper investigates and reveals the working mechanism
and provides design guidelines for multi-stopband metamaterial



Fig. 15. Transient analysis under ω¼900 Hz: (a) vibration of nodes at x¼1 m, 2.5 m
and 4 m on the centerline, (b) ODSs from direct numerical integration, and
(c) distribution of shear intensity Q1 along centerline.

Fig. 16. Vibration suppression for metamaterial plates with absorber natural fre-
quencies at random distributions N(800, 0), N(800, 802) and N(800, 1602):
(a) average vibration suppression at x¼2.5 m and (b) average vibration suppression
at x¼4 m. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)
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plates with two-mass vibration absorbers for elastic wave
absorption and vibration suppression. Dispersion analysis of a
working unit and frequency response analysis and transient ana-
lysis by direct integration of a full-size finite-element model with
boundary conditions are conducted to investigate the stopband
effect. Two stopbands are generated at the two sides of the
absorbers' resonant frequency. The multi-stopband metamaterial
plate is shown to be based on the concept of traditional multi-
frequency vibration absorbers. The local resonant vibrations of the
vibration absorbers generate inertial forces to straighten the
plate's bending and attenuate/stop wave propagation. The low
damping in the primary absorber allows the excitation energy be
quickly transferred into the absorbers, and the high damping in
the secondary absorber combines the two stopbands into a broad
stopband and damps out the excitation energy. Sensitivity analysis
shows that relatively large sensitivity is found at the two stopband
regions.
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